
The interpreter PIC:
A tool in the field of image processing

V
H. P. MEINZER and U. ENGELMANN

Institute of Documentation, Information and Statistics,
German Cancer Research Centre,
Im Neuenheimer Feld 280, D-6900 Heidelberg, FR Germany

(Received September 1983)

Keywords: Command language; Image processing; Interactive computing; Interpreter;
Pntter~? rerognrtlon; Pictrtre proressing

1. Introduction
Many languages used in image processing have been coded, around 50 in

the USA alone. Whilst some are merely collections of subroutines [I], others are
compilable languages with the features of classical programming languages [2,3,4].
There are also command- and menu-driven languages which can be used inter-
actively. The syntax, readability and power vary significantly, and are often quite
poor [SI. PIC, the language described here, is an attempt to integrate an easy dialogue
and flexibility not commonly found in other languages [6].

In image processing today a system designer often retains his own set of
subroutines for both basic and sophisticated operations. Thus, with the help of
these, a specific solution for a specific problem is tailored. This approach is very
costly and is manpower-dependent. A better solution is the use of one common
subroutine package by more than one programmer. Thus, programs for one problem
are not developed at several different times by several different programmers. The
disadvantage of this method is that every time when you Want to use one of the
features of the subroutine package, it is necessary to write a new main program. Thus
it is a method which lacks flexibility.

Experience shows that it is more productive to develop an integrated easy-to-use
package which can be applied by not only the programmer or system designer, but
also by the user. Of Course, such a package must be interactive to support the User
who is new to the field. On the other hand, it should be very flexible and new
approaches should easily be integrated.

2. Why a command language?
There are three basic methods of controlling a dialogue with a Computer. One is

the sequential dialogue, a sequence of questions and answers. Such a dialogue is
popular with the inexperienced User but proves to be inflexible both for the system
designer and the more adept user. Control of a sophisticated dialogue is not feasible
with this method.

The second approach to a man-machine dialogue is the menu technique where a
User picks an item from a set of predefined possibilities. Initially this method also
looks promising. It can be quite attractive for the control of simple systems. The
moment a system has more than a few variable Parameters, however, this method is

$84 H. P. Meinzer und U. Engelmann

no longer suitable because you need more and more menus each of which has to be
put through a process of selection.

Another method of controlling a dialogue is a command language. For a given
field of application all necessary functions are made available through commands.
The set of all necessary commands forms an application-oriented language. A good
example for such a language are the text-editing Systems (editors) which are available
on virtually any computer. The disadvantage of this approach is the greater amount
of training required to make use of such a language. Once a User has learned to use a
few basic functions, he will appreciate the efficacy of this method. Both the User and
the system designer profit from the enormous flexibility of a command language
which can also be called a problem-oriented interpreter.

Thus, we have in our institution a generator for building our own interpreters [7]
and good esperience with interpreters for graphic problems [8,9]. We decided to
develop another Interpreter for image-processing problems [10].

3. The language PXC
The lang~iage rrc. consists of about 11 0 commands in nine groups:

- dataset management functions;
- display functions;
- simple image manipulations;
- histogram modification;

6
- gradient Operators;
- smoothing algorithms;
- Fourier manipulations;
- arithmetic and Boolean operations;
- auxiliary functions.

- Selected commands from each group will be described in more detail. When reading
a command it should be explained that all expressions in parenthesis may be
dropped. The sign ' I ' is the logical OR-function. Some dataset management functions
are for example

LOAI) Same
STORE Name
ERASE Name

All images are stored online on disc. The size of any image can be chosen arbitrarily
- e i t h a maximum of 900 X 900 pixels. When an image is loaded into the PIC

workspace, name and size are also transferred. Thus, the User addresses an image
- only via its name and need not deal with the actual size. All following operations are

performed on the image stored in the workspace, except in certain cases when an
aperation is performed on two images.

* T

J ' ' . 7 . .

- C
DISPLAY

, r . ; , PRINT (REV) (ON WHITE PAPER)
, : ,BLOTHISTO

PLOT TOP0

, PLOT 3~ (PHI, THETA)

, . PLOT ISO IVALUE ,:-

, . ' I 7 PLOT CONTOUR

91 ., PLOT GREY

The interpreter PIC as an image-processing tool

DISPLAY produces output on a Tektronix 41 12A terminal.
PRINT permits a low quality print with no more than 14 grey-levels on a standard
alphanumeric printer. The five PLOT functions all need a graphic terminal Tektronix
4014 for the display of the output. HISTO plots the histogram of the grey-values. The
most useful commands here are TOPO and 3n which plot a pseudo three-dimensional
topogram of an image (tigure 1 (U)) . The? have a hidden line algorithm integrated
and produce reasonable output. ISO and CONTOUR plot isophotes and contours
(figure 1 (b)) and PLOT GREY produces a pseudo grey-value image (see figure 3).

(U) (b)
Figure 1. (a) T h e topogram of a rat's colon crypt (b) The contour plot of the same image.

H. P. Meinzer und U. Engelmann

Four simple image manipulations are

WINDOW IX, IY, IDELTAX, IDELTAY

SCALE N(/M)
ROTATE (9011 801270)
REFLECT (HORIVERIDIAG~ IDIAG~)

With these commands both the size and the orientation of an image can be
influenced.

Histogram modifications are:

NORM GREYSCALE

FLAT
SELECT N-M (SET IVALUE)

The first command transforms the grey-values of an image in a way that the full
range from 0 to 255 is used. FLAT works sinlilarly and additionally equalizes the
histogram. The last command selects a specified range of grey-values and Sets the
remaining values to Zero or to the value indicated.

As an example, we load an image with 'LOAD CELLS' (two cells after mitosis); then
we display a topogram of it with 'PLOT TOPO' (figure 2 (U)) , select all pixels in the range
of 50 to 150 by 'SELECT 50-150' (the remaining pixels become 0) and display the
topogram of the resulting image (figure 2 (b)) . There are seven gradient operators
available in PIC, e.g.,

SOBEL

ROBERTS

For example, figure 3 (U) shows an original image (as in figure 2) displayed with
command 'PLOT GREY' and in figure 3 (b) the result of command 'ROBERTS' is shown.
All functions work on a three by three subimage and evaluate different kinds of
gradients.

For smoothing we have commands like

MEDIAN N

SMOOTH

MEDIAN is a median filter with a window of the size N by N. SMOOTH is a simple
Operator on a three by three window.

There are a number of FOURIER OPERATIONS available:

FOURIER (INVERSE)
CONV

CORR

POWER

FOURIER evaluates the Fast Fourier Transformation of a given image and the inverse.
Operations on the resulting Fourier Transformations like high-pass-pr low-pass
filters are also available. c o ~ v and CORR determine the convolution and Eörrelation of
two images in the frequency domain. POWER evaluates the power spectrum of an
image (figure 4).

The interpreter PIC as an image-processing tool

Figure 2 . (U) Topogram of two cells after mitosis. (b) All pixels out of range 50-150 set to 0

H . P . Meinzer and U . Engelmann

Figure 3 (U) A display of two cells with 'PLOT GREY'. (b) The plot of the same image after dpplying
the 'ROBERTS'-0perüt0~.

The interpreter PIC as an image-processing tool

Some basic arithmetic functions are:

If no constant is specified, the functions work on two images; otherwise, a constant is
added, subtracted etc. The BSolean functions AND and OR are working on two images
pixel by pixel.

Finally there are a few auxiliary functions:

STATUS

HELP

END

STATUS displays any available information on the image actually in the workspace and
the values of a large number of variables. HELP and END are self-explanatory.

H. P. Meinzer and U. Engelrnann

Usually the commands are entered and executed line by line. That is not very
flexible. Therefore we allow the concatenation of several commands by a semicolon
or the word 'AND', e.g.,

'LOAD IMAGE; SMOOTH AND DISPLAY'

These minor extensions make the language look less formal.

4. Special features of the interpreter
Though PIC already includes a number of generally useful commands and though

we continue to expand the language whenever we find a feature which can be of use
for more than one specialized application, something will always be missing.
Specialized individual programs can be included in PIC via a command

The subroutines have a predefined Parameter list and are loaded dynamically at
runtime only if necessary. This command exploits a special feature of our operating
system. The use of this option will be restricted to system designers and
programmers with a solid knowledge of the internal structure of PIC, our operating
system and FORTRAN.

PIC can be used in several ways. Most frequently it is used in the conversational
mode at a graphic terminal, where the User can verify the result immediately. For
extremely time-consuming operations it is better to collect the command sequence in
a file and execute it in batch mode.

The system permits abbreviation of most of the commands. This is very useful
for a User who is familiar with the commands. Sometimes a User wants to alter a
command word or perhaps to abbreviate a comrnand in a different way. He can then
define a synonym for a command or command sequence. Naturally, the building of
procedures consisting of PIC commands is also supported. An example for defining
synonyms is:

Abbreviations, synonyms and procedures can be defined locally only for one User or
globally for all Users. These features were made available through the use of a special
input processor developed in our institution [I 11.

5. Implementation
PIC runs on an IBM 3032 with the operating.system TSS (time-sharing system). It

needs at least one graphic output device like a Tektronix 4014 storage tube. The
software is written in FORTRAN IV.

The space required for running PIC is less a result of the size of the programs (as
we can load subroutines dynamically at runtime only when they are really needed)
but more a function of the size of the workspace reserved for the storage of pictures in
the program. Today we allow up to three integer pictures (max. 900 X 900 pixels) and
four real pictures (max. 256 X 256 pixels) which add to a little more than 6 Mbyte~.

A simple smoothing algorithm on a 256 X 256 picture takes 1-3 seconds. A median
filter on a 64 X 64 picture takes two to three seconds, depending on how clever the
sort algorithm is. The times quoted are also depending on the workload on our time-
sharing machine.

The interpreter PIC as an image-processing tool

The analysis of the input strings (commands) is done by a parser which was
generated by the parser and lexical analyser generating system developed in our
institution [7, 121. For the graphic output we used the Tektronix packages TCS

(terminal control system) and AG-11 (advanced graphics two) [13,14]. Some of the
image processing software was copied from the literature or contributed by other
individuals or institutions [15, 16, 17, 18, 191.

6. Application
As the majority of the commands have a very general character, PIC can be applied

to all kinds of digitizedimages. Usually it is sufficient to add very few specialized
routines to solve a special pattern recognition problem. As PIC was developed at the
German Cancer Research Centre (DKFZ), Heidelberg, all our applications are in the
medical-biological field.

We first applied PIC to one-dimensional electrophoresis gels [20]. These gels are
produced by the thousand in all groups working on DNA and RNA mapping and
sequencing. The sequencing of viruses of a length of more than ten thousand
nucleotids involves production and analysis of hundreds of images. At the DKFZ a
very sophisticated software package is also available for the reconstruction of DNA or
RNA sequences. The input for the reconstruction is a lot of randomly-cut subse-
quences. These subsequences have a variable length and can be defined by analysing
the pattern of a gel image.

Another field of application is the evaluation and comparison of two-dimensional
gels. These images stem from various fields like immunology or cell and tumour
biology. The method of pattern recognition allows a comparison of two or more
images. In contrast to the purely visual evaluation, the image processing methods
permit a quantitative description of images.

In another project we tried to analyse the different Stages of tumour growth in the
rat's colon. Pattern recognition methods can probably analyse an image more
precisely than a pathologist. The results of these evaluations will be used to build a
computer simulation model of cell kinetic processes.

Some other projects involving image processing in the biological-medical field
will be worked on in the near future, e.g., automatic measuring of DNA length in
electron microscope images.

7. Conclusion
Experience with the language PIC shows that the user can understand it and work

with it very easily. A beginner in the field of image processing can learn and use (!)
standard methods in this field rather quickly.

The didactic value is matched by the simplicity of building problem-oriented
prograrns. Usually only a few specialized routines have to be added to solve a special
problem. A researcher can concentrate on the features specific to his application and
need not deal with all the standard problems that usually consume so much of his
manpower.

Finally, PIC may be expanded whenever a useful algorithm Comes up. This can be
done because PIC itself is generated by other programs which allow an easy addition
of further commands and the appropriate FORTRAN code.

The interpreter PIC as an image-processing tool

Acknowledgements
Many people contributed ideas and programs to PIC. We wish to thank

J. Dengler, M. Jaksch and G. Zinser for the software they made available and
Dr Komitowski who provided images. Special thanks go to Professor G. Zajicek,
who helped in many ways, and the colleagues in our institution who advised us in
using the Parser and lexical analyser generators.

k,
References

1. TAMURA, H., TOMITA, F., SAKANE, C., YOKAYA, N., SAKAUE, K. and KANEKO, M. (1982). A
transportable image processing software package: SPIDER. In M. Lang (ed.), Proceedings of the 6th
I*ternational Conference on Pattern Recognition, Munach, 1982 (IEEE Computer Society Press, Silver
Spring, MD), pp. 75-78.

2. AHO, A. V. and ULLMANN, J. D. (1972) The Theory of Parsing, Translatzonand Compiling. Volumes 1
and 2 (Prentice Hall, Englewood Cliffs, NJ)

3. NEWMAN, W. M. and SPROULL, R. F. (1973) Principles of Interactive Computer Graphics (McGraw
Hili, New York).

4 WIRTH, N. (1977) Compilerbau (Teubner, Stuttgart).
5. PRESTON, K. (1980) Imagemanipulative languages: Aprelirninary survey. In E. S. Gelsema and L. N.

Kanal (eds.), Pattern Recognition in Practise (North-Holland Publ. Co., Amsterdam), pp. 5-20.
6 MEINZER, H. P. (1980) Command languages in application programming. In D. A. B. Lindberg and

S. Kaihara (eds): M E D I N F O 80 (North-Holland Publ Co , Amsterdam), pp. 719-722.
7 RECKER, X., OSTERRI RG, G. and S C H ~ D E \ ~ ~ ~ , D T , K (1977) ~ - \ i r 1 Generator fur I I (1)-Parser und

lehikalische Analvseprogramme, Technzcal Report ,Vo 10 (U ~ F Z . Heidelberg).
8. ALBERTS, S. and MEINZER, H. P (1981) I N S T A N T ~ - E ~ ~ Dialogprogramm zur Erstellung von

F Graphiken, Technzcal Report N o . 21 (DKFZ, Heidelberg).
9. MEINZER, H. P. (1979) INSTANT^ -Ein Programm zur Herstellung von Erhebungsbogen und Postern,

Technical Report N o . 16 (DKEZ, Heidelberg).
10. ENGELMANN, U. and MEINZER, H. P. (1982) PIC-Ein Interpreter zur Bildbearbeitung, Technzcal

V Report No . 25 (DKFZ, Heidelberg).
i 11. SCHADEWALD, K., MERX, R. and KYNAST, W. (1980) Der Input-Prozessor, Technical Report No . 18

(DKFZ, Heidelberg).
12. SCHADEWALDT, K., MERX, R. and LICHT, G. (1 983) PES - Programentwicklungssystem. Technzcal

Report No . 29 (DFKZ, Heidelberg).
13 HAHNE, H. (1974) ~ ~ ~ ~ ~ ~ F - G r a p h i s c h e s Programmpaket. Technical Report No . 1 (DKFZ,

Heidelberg).
14. IIarivr, 11. (1976) TEKTROWIX. TCS und AG-11. Technzcal Report No 8 (D ~ K Z , Heidelberg).
15. CASTLEMAN, K. R. (1979) Digttal Image Processzng (Prentice Hall, Englewood Cliffs, NJ).
16. GONZALEZ, R. C. and WINTZ, P. (1977) Digital Image Processzng (Addison-Wesley Publ. Co.,

Reading, MA).
17. PRATT, W. K. (1978) Digital Image Processing (John Wiley & Sons, New York).
18. ROSENFELD, A. and KAK, A. C. (1976) Digital Picture Processing (Academic Press, New York).
19 ROSENFELD, A. (1979) Picture Languages (Academic Press, New York).
20 ENGEI.MANN, U. and ~ I ~ I Y z E R , H. P. (1983) 4nalqsis of electrophoresis gels bq an image processing

System In J .4 \ dn Benimel, 11 J Bdii dnd 0 Wigerr~ (ed\), .1IEUI.YFO '83 Proceedings (Xorth-
Holland, Arnsterdam), pp 410-413.

